Ebey Island Restoration Feasibility Study Draft Criteria for Scoring Restoration Project Alternatives Presented to the Advisory Committee 22 June 2010 ## Draft SCRE Criteria & Scoring Scheme | | | | Score | | | | | |--|--|--------------|--|---|--|--|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Size of Restored
Area | • Wetted Area at
MHHW | | 0 - 309 acres | 310 - 619 acres | 620 - 928 acres | 929 - 1,237 acres | | | Amount of Fish
Habitat | • Wetted Area at
MLLW | | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 0 - 3% | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 3 - 15% | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 16 - 50% | (Wetted Area at
MLLW)/(Wetted Area
at MHHW) = 51 -
100% | | | Energetics/Exchange | • Tidal Prism (Volume) | | None: negligible increase in tidal prism | A little: Calculated restored tidal prism is ranked in the lower 50% of the different scenarios | A lot: Calculated
restored tidal prism is
ranked in the top 50%
of the different
scenarios | Most: Calculated restored tidal prism is ranked in the top 3 of the different scenarios | | | Predicted long-term elevation distribution | Histogram of area
per elevation,
compared with
associations between
communities elevation
ranges | | Monotypic elevation above or below intertidal zone | Monotypic elevation within intertidal zone | Bi-modal elevation
distribution with
intertidal flat and
channel | Diverse range of elevations distributed across the intertidal and shallow subtidal zones | | | | How easily can juvenile fish find the site? What proportion | | Fish access to
restored site from
Ebey Slough; narrow
dike breach | Fish access to
restored site from
Ebey slough; full or
wide dike breach | Fish access to
restored site from
mainstem or
Deadwater slough;
narrow dike breach | Fish access to
restored site from
mainstem or
Deadwater slough; full
or wide dike breach | | | | | | Score | | | | | |---|--|--------------|--|---|---|---|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Complexity and
Diversity of Habitats | Histogram of area per elevation; compared with associations between communities elevation ranges Planting plans Channel creation plans Hydrodynamic model results | | Wildlife managed
agricultural land with
ditch drainage network | Subtidal: no plant
growth expected; no
channels | A few different plant | Diverse assemblage of
native plant
communities across
entire site; meandering
dendritic channels
present | | | Influence by
Adjacent Land Uses | Will adjacent land uses significantly affect the success of salmon recovery? | | Intense agriculture
using lots of
pesticides, fertilizers,
manure, etc, that
would significantly
affect fishes' success | Moderately intense
agriculture having
moderate impact on
the restoration project | Low-impact/organic
agriculture having little
to no impact on
restoration project | Natural environment | | | Completeness of
Restored Tidal
Action | Percent of full tidal
signal at relevant
location | | Tide Gate Repair/
Barrier Removal; 0% -
25% of tidal amplitude
outside levees | | Dike Breach at Several
Locations, 51% - 75%
of tidal amplitude
outside levees | Full Dike Removal;
76% - 100% of tidal
amplitude outside
levees | | | Other Species: Birds | General change in
predicted species
composition based on
bird guild associations
with habitat types and
predicted habitat types
based on elevation | | Anticipate the possibility for "less desirable" bird species to displace native species | Anticipate less habitat opportunity for existing bird species | Anticipate somewhat greater habitat opportunity for existing bird species | Anticipate much greater habitat opportunity for a wide variety of bird species | | | | | | Score | | | | | |--|--|--|---|---|---|--|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Effects On or Due To
Other Restoration
Projects and Salmon
Recovery Actions | by altering the | Project will significantly
affect other restoration
projects, causing them
to not function properly | and may have to re-
engineer them at | Project will have minor impacts on other restoration projects, and may have to take inexpensive steps to ensure they continue to function | Project will have no
affect on other
restoration projects | Project will have a positive affect on other restoration projects | | | Water quality | Residence time | | > 5 days | 3 - 5 days | 1 - 2 days | < 1 day | | | Current Use | Is the property being used for agriculture? | | Property is currently being used highly productive agriculture | Property is currently being used for moderately productive agriculture | Property is occasionally used for minor agricultural uses | No | | | Contiguity of
Agricultural Land | Will the project break
up large, contiguous
tracts of agricultural
land or leave small,
isolated parcels? | | Leaves small, isolated agricultural parcels | Leaves moderately sized, but isolated agricultural parcels | Does not break up large tracts of agricultural land | Helps consolidate
smaller tracts into
larger, contiguous
tracts | | | Impacts of
Restoration Project
on Agricultural Uses | Does the restoration project have negative, or positive, impacts on agriculture? Does it preclude certain uses? Or does it help create new agricultural opportunities? | | Project precludes
continuation of all
adjacent agricultural
uses | Project precludes
continuation of
declining agricultural
uses | Project has no effect
on adjacent
agricultural uses | Project has a positive
affect on or helps
create new agricultural
opportunities | | | | | | Score | | | | |--|--|---|---|---|--|---| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | Soil Suitability for
Agriculture | Conservation Service's soil classification | | Mukilteo muck, Puget
Silty clay loam,
Puyallup fine sandy
loam, Snohomish silt
loam, or Terric
Medisaprists (nearly
level), if drained and
flood protected | Mukilteo muck, Puget
Silty clay loam,
Puyallup fine sandy
loam, Snohomish silt
loam, or Terric
Medisaprists (nearly
level), if not drained
and flood protected | Other soils, if drained and flood protected | Other soils | | Drainage System
Required for
Continued
Agricultural Use | How does the project's drainage system affect adjacent agricultural lands? What mechanism is used? | | Project worsens drainage in remaining agricultural areas; pumping required frequently | Project doesn't affect
drainage on adjacent
agricultural areas;
pumping required
occasionally | Project doesn't affect
drainage on adjacent
agricultural areas; all
drainage by gravity, no
pumping required | Project improves
drainage on remaining
agricultural areas | | Effects on
Archaeological,
Historical, and
Cultural Resources | Presence of significant resources | Significant resources exist which cannot be altered | Project may affect
significant resources,
but can be mitigated
with great difficulty or
cost | Project may affect
significant resources,
but can easily be
mitigated | Project will not affect significant resources | Project will protect significant resources | | Effects on Existing
Flood Protection
Infrastructure | Will the project(s) cause erosion, sedimentation or slope stability issues for the existing dikes (i.e., will breaching one area cause stability issues for dikes in other areas?) | Project will cause | Project will cause
medium issues that
can be mitigated, but
it's relatively expensive
to do so | Project will cause
minor issues that can
be easily mitigated | Project will not affect existing dikes | Project will improve
dike stability | | | | | Score | | | | | |--|---|---|---|---|--|---|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Feasibility of New
Flood Protection
Infrastructure | dikes? Is it technically feasible to build new | New flood protection infrastructure cannot be built due to soils or other technical constraints | New flood protection infrastructure can be built but with new, innovative materials or methods that may take decades to prove | New flood protection
infrastructure can be
built using standard
materials and
methods, but may take
more than 10 years | New flood protection
infrastructure can be
built using standard
materials and
methods, but may take
several years to allow
for ground settling | New flood protection
infrastructure can be
relatively easily built
using standard
materials and methods | | | Economic Efficiency
of Flood Protection
Measures | infrastructure? | Ratio such that the
district is no longer
economically viable | Change in ratio that adds significant cost for flood protection | Change in ratio that
adds moderate cost for
flood protection | Change in ratio that adds minor cost for flood protection | No change in ratio | | | Impacts on Utilities
and Other
Infrastructure | Will the project have significant impacts on existing utility | Major utilities are present that cannot be relocated, maintained, or flood-proofed | Major utilities are present that would be extremely difficult to relocate, maintain, or flood-proof | Major utilities are present that would be moderately difficult to relocate, maintain, or flood-proof | relocated, maintained, and/or flood-proofed | No utility infrastructure present | | | Impacts on Road
System | what effects will the | Project will cause a
state highway to need
to be relocated | Project will cause
significant segments of
major County arterials
to relocated | Project will cause significant segments of County collector roads to be relocated | Project will cause loss
of segments of public
or private local roads
that may or may not
need to be replaced | Project will not cause
any public or private
roads to be relocated | | | Effects on
Recreational Uses -
Fishing | What effects will the project have on fishing opportunities? | | • | Project would eliminate
some informal, and not
provide any new,
fishing opportunities | Project would not
eliminate any, and
would provide some
informal, fishing
opportunities | Project would not
eliminate and, and
would provide
additional, significant
fishing opportunities | | | | | | Score | | | | | |---|---|--------------|--|--|---|--|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Effects on
Recreational Uses -
Hunting/Shooting | What effects will the project have on hunting and shooting opportunities? | | Project will eliminate existing hunting/shooting opportunities | Project would eliminate some informal, and not provide any new, hunting/shooting opportunities | Project would not
eliminate any, and
would provide some
informal,
hunting/shooting
opportunities | Project would not
eliminate and, and
would provide
additional, significant
hunting/shooting
opportunities | | | Effects on
Recreational Uses -
Boating | What effects will the project have on boating opportunities? | | Project will eliminate existing boating opportunities | Project would eliminate some informal, and not provide any new, boating opportunities | Project would not
eliminate any, and
would provide some
informal, boating
opportunities | Project would not
eliminate and, and
would provide
additional, significant
boating opportunities | | | Effects on
Recreational Uses -
Hiking/Walking | What effects will the project have on hiking and walking opportunities? | | Project will eliminate existing hiking/walking opportunities | Project would eliminate
some informal, and not
provide any new,
hiking/walking
opportunities | Project would not
eliminate any, and
would provide some
informal,
hiking/walking
opportunities | Project would not
eliminate and, and
would provide
additional, significant
hiking/walking
opportunities | | | Effects on
Recreational Uses -
Bird Watching | What effects will the project have on bird watching opportunities? | | Project will eliminate existing bird watching opportunities | Project would eliminate
some informal, and not
provide any new, bird
watching opportunities | Project would not
eliminate any, and
would provide some
informal, bird watching
opportunities | Project would not eliminate and, and would provide additional, significant bird watching opportunities | | | Other stakeholder concerns | Other criteria as raised
by the Advisory
Committee (TBD) | | | | | | | Cliff Strong - cliff.strong@amec.com - 425.368.0952 ## Pairwise Comparison/ Ranking of Decision Factors ## Example – Alternative E | | | | Score | | | | | |---|---|--------------|--|---|--|--|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Size of Restored
Area | • Wetted Area at
MHHW | | 0 - 309 acres | 310 - 619 acres | 620 - 928 acres | 929 - 1,237 acres | | | Amount of Fish
Habitat | • Wetted Area at
MLLW | | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 0 - 3% | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 3 - 15% | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 16 - 50% | (Wetted Area at MLLW)/(Wetted Area at MHHW) = 51 - 100% | | | Connectivity to Total
Fish Population | How easily can juvenile fish find the site? What proportion of the population is likely to encounter the site? Do any fish passage barriers prevent access? | | Fish access to restored site from Ebey Slough; narrow dike breach | Fish access to
restored site from
Ebey slough; full or
wide dike breach | Fish access to
restored site from
mainstem or
Deadwater slough;
narrow dike breach | Fish access to
restored site from
mainstem or
Deadwater slough; full
or wide dike breach | | | Completeness of
Restored Tidal
Action | Percent of full tidal
signal at relevant
location | | Tide Gate Repair/
Barrier Removal; 0% -
25% of tidal amplitude
outside levees | Dike Breach at One
Location; 26% - 50%
of tidal amplitude
outside levees | Dike Breach at Several
Locations, 51% - 75%
of tidal amplitude
outside levees | · · · · · · · · · · · · · · · · · · · | | | Contiguity of
Agricultural Land | Will the project break
up large, contiguous
tracts of agricultural
land or leave small,
isolated parcels? | | Leaves small, isolated agricultural parcels | Leaves moderately sized, but isolated agricultural parcels | Does not break up large tracts of agricultural land | Helps consolidate
smaller tracts into
larger, contiguous
tracts | | | | | | Score | | | | | |--|--|---|--|---|--|---|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Impacts of
Restoration Project
on Agricultural Uses | Does the restoration project have negative, or positive, impacts on agriculture? Does it preclude certain uses? Or does it help create new agricultural opportunities? | | Project precludes
continuation of all
adjacent agricultural
uses | Project precludes
continuation of
declining agricultural
uses | Project has no effect
on adjacent
agricultural uses | Project has a positive
affect on or helps
create new agricultural
opportunities | | | Drainage System
Required for
Continued
Agricultural Use | How does the project's drainage system affect adjacent agricultural lands? What mechanism is used? | | Project worsens
drainage in remaining
agricultural areas;
pumping required
frequently | Project doesn't affect
drainage on adjacent
agricultural areas;
pumping required
occasionally | Project doesn't affect
drainage on adjacent
agricultural areas; all
drainage by gravity, no
pumping required | Project improves
drainage on remaining
agricultural areas | | | Effects on Existing
Flood Protection
Infrastructure | Will the project(s) cause erosion, sedimentation or slope stability issues for the existing dikes (i.e., will breaching one area cause stability issues for dikes in other areas?) | Project will cause | Project will cause
medium issues that
can be mitigated, but
it's relatively expensive
to do so | Project will cause
minor issues that can
be easily mitigated | Project will not affect existing dikes | Project will improve
dike stability | | | Feasibility of New
Flood Protection
Infrastructure | Will soils support new dikes? Is it technically feasible to build new flood infrastructure? | New flood protection infrastructure cannot be built due to soils or other technical constraints | New flood protection
infrastructure can be
built but with new,
innovative materials or
methods that may take
decades to prove | | New flood protection
infrastructure can be
built using standard
materials and
methods, but may take
several years to allow
for ground settling | New flood protection
infrastructure can be
relatively easily built
using standard
materials and methods | | | | | | Score | | | | | |--|--|--|---|--|---|--|--| | Decision
Factors | Measurement | Deal Breaker | 1 (lowest) | 2 | 3 | 4 (highest) | | | Economic Efficiency
of Flood Protection
Measures | What effects will the project have on the Diking District's ability to maintain it's flood protection infrastructure? Changes can be measured as a change in ratio of length of dikes to land protected from flooding. | | Change in ratio that adds significant cost for flood protection | Change in ratio that adds moderate cost for flood protection | Change in ratio that adds minor cost for flood protection | No change in ratio | | | Impacts on Utilities
and Other
Infrastructure | Will the project have significant impacts on existing utility infrastructure? | Major utilities are present that cannot be relocated, maintained, or flood-proofed | Major utilities are
present that would be
extremely difficult to
relocate, maintain, or
flood-proof | Major utilities are present that would be moderately difficult to relocate, maintain, or flood-proof | Minor utility
infrastructure present,
which can easily be
relocated, maintained,
and/or flood-proofed | No utility infrastructure present | | | Impacts on Road
System | What effects will the project have on roads? | State highway to heed | | Project will cause significant segments of County collector roads to be relocated | | Project will not cause
any public or private
roads to be relocated | | Example (short) Score = 31